首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3152篇
  免费   147篇
  国内免费   2篇
  2021年   38篇
  2020年   21篇
  2019年   21篇
  2018年   25篇
  2017年   18篇
  2016年   41篇
  2015年   91篇
  2014年   104篇
  2013年   184篇
  2012年   191篇
  2011年   185篇
  2010年   95篇
  2009年   75篇
  2008年   172篇
  2007年   186篇
  2006年   170篇
  2005年   170篇
  2004年   174篇
  2003年   186篇
  2002年   158篇
  2001年   103篇
  2000年   101篇
  1999年   84篇
  1998年   41篇
  1997年   41篇
  1996年   36篇
  1995年   37篇
  1994年   33篇
  1993年   26篇
  1992年   45篇
  1991年   46篇
  1990年   35篇
  1989年   47篇
  1988年   29篇
  1987年   25篇
  1986年   22篇
  1985年   12篇
  1984年   36篇
  1983年   15篇
  1982年   19篇
  1981年   20篇
  1980年   13篇
  1977年   9篇
  1976年   9篇
  1975年   11篇
  1974年   9篇
  1973年   10篇
  1972年   11篇
  1971年   10篇
  1970年   9篇
排序方式: 共有3301条查询结果,搜索用时 140 毫秒
31.
32.
Fibrinolytic system is one of the major proteolytic pathways in vivo and primarily responsible for dissolution of thrombi. Two enzymes are primarily involved in this proteolytic system; plasminogen activator (PA) and plasmin. Plasmin is formed by a limited proteolysis of plasminogen by PA, which is mainly synthesized by and secreted from vascular endothelial cells. This proteolytic process proceeds physiologically only on the surface of fibrin. Thus, initiation and progression of the fibrinolytic process depend on the function of endothelial cells and fibrin formation. Endothelial cells may also synthesize and excrete PA inhibitor (PAI) which inhibits immediately, PA once released. The rates of synthesis and excretion of PA and PAI by endothelial cells are regulated by various factors. Among them, thrombin stimulates the release of PA whereas activated protein C may decrease the release of PAI. Thus, both enzymes enhance fibrinolytic potential. PA which has escaped from inhibition by PAI binds to fibrin. 2-Plasmin inhibitor (2PI) inhibits the binding of plasminogen to fibrin, thereby suppressing this fibrin-associated plasminogen activation. A part of 2PI is cross-linked to fibrin by activated factor XIII when fibrin is formed, and the 2PI thus cross-linked to fibrin inhibits in situ plasmin formed on fibrin. Thus, 2PI as well as PAI plays a central role in inhibition of fibrinolysis.  相似文献   
33.
Abstract The complete nucleotide sequence of pNS1 (3879 bp), a tetracycline-resistance (TcR) plasmid drived from staphylococcal plasmid pTP5, has been determined and compared with that of the staphylococcal TcR plasmid pT181 [6]. The nucleotide sequences of the 2 plasmids are in agreement, except for 18 nucleotides, but these differences are significant in that they give rise to new open reading frames (ORFs). A short ORF-D is found in the copy control region, and the TcR region contains a single large ORF-A, that encodes the Tet protein (50 kDa). The upstream region of ORF-A contains 3 inverted repeat sequences, which can generate structures very similar in conformation of the structure of the control region of the inducible erythromycin-resistance gene of pE194.  相似文献   
34.
There has been no report on the determination of uric acid (UA) in human brain and heart tissues. UA and ascorbic acid (AA) in human cerebral cortex and heart tissues excised after cardiac death have been studied by reversed-phase high-performance liquid chromatography (HPLC) with electrochemical detection (ECD). It has been found that the levels of AA and UA in the human cerebral cortex tissues tend to decrease and increase, respectively, after cardiac death as a function of time between death and forensic operation. In addition, it has been found that there is no special relationship between UA levels in human heart tissues and time after cardiac death, also that the UA levels in the heart are high as compared with those in human cerebral cortex tissues. We have emphasized that the HPLC-ECD method is useful in determining UA and AA in mammalian tissues by one-time chromatography to gain a better understanding of the relationship between disease and serum urate level.  相似文献   
35.
Experiments were designed to examine the early events in the initiation of glutamate deamination in kidney. Perfused kidneys from methionine sulfoximine-treated rats formed ammonia from [15N]glutamate via the purine nucleotide cycle. The turnover of the 6-amino group of adenine nucleotides to yield ammonia occurred at the rate of 0.30 mumol/g of kidney/min. This rate is 3-4 times larger than in liver and is in agreement with published rates of the purine nucleotide cycle in kidney. The addition of 0.1 mM fluorocitrate to glutamate perfusions stimulated ammonia formation 3 1/2-fold. The turnover of the 6-amino group of adenine nucleotides increased during the first 5 min after adding fluorocitrate to form ammonia predominately from tissue glutamate and aspartate. This turnover correlates with a 3 1/2-fold increase in kidney tissue IMP levels. As the ATP/ADP ratio fell the purine nucleotide cycle was inhibited and glutamate dehydrogenase was stimulated to form ammonia stoichiometric with glutamate taken up from the perfusate. Ammonia formation via glutamate dehydrogenase occurred at a rate of 1.0 mumol/g of kidney/min. Fluorocitrate completely blocked ammonia formation from aspartate in perfusions. The perfused kidney formed ammonia from aspartate via the purine nucleotide cycle at a rate of 1.0 mumol/g of kidney/min. The results indicate a discrete role for aspartate in renal metabolism. Ammonia formation via the purine nucleotide cycle can occur at significant rates and equal to the rate of ammonia formation from glutamate via glutamate dehydrogenase.  相似文献   
36.
A Ichinose  T Tamaki  N Aoki 《FEBS letters》1983,153(2):369-371
The NH2-terminal 12-residue peptide of alpha 2-plasmin inhibitor, Asn-Gln-Glu-Gln-Val-Ser-Pro-Leu-Thr-Gly-Leu-Lys-NH2 . AcOH, was found to be a good substrate for plasma transglutaminase (activated blood coagulation factor XIII) and rapidly incorporated into fibrin by the enzyme. A high concentration of the peptide inhibited the enzyme-mediated cross-linking of alpha 2-plasmin inhibitor to fibrin probably by competing with the inhibitor for the same site of fibrin alpha-chain.  相似文献   
37.
A restriction map of chicken embryo lethal orphan (CELO) virus DNA was reported with ten restriction endonucleases (XbaI, XhoI, SalI, HindIII, EcoRI, BglI, KpnI, BamHI, PstI and SstI). CELO virus DNA was estimated by comparing CELO virus DNA fragments with marker DNA fragments to have a molecular weight of 29.3·106.  相似文献   
38.
The effect of 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase [GTP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.32], was tested on NH3 formation via the purine nucleotide cycle and glutamate dehydrogenase (EC 1.4.1.2). NH3 excretion in rats increased 70-fold after 48 h of NH4Cl feeding, from 12.2 +/- 4.5 to 862 +/- 190 mumol/mg of creatinine. At 4 h after a single intraperitoneal injection of 3-mercaptopicolinate into NH4Cl-fed rats, NH3 excretion was inhibited by 93%. Kidneys of NH4Cl-fed plus 3-mercaptopicolinate-treated rats, compared with those of NH4Cl-fed rats, showed a 3.5-fold increase in the content of IMP, 5-fold increase in adenylosuccinate, 4-fold increase in aspartate, and a 30% increase in AMP. 3-Mercaptopicolinate completely inhibited NH3 and glucose formation from glutamate in tubules from acidotic rats and NH3 formation from aspartate in kidney perfusion experiments. When transamination in tubules was prevented by 2-amino-4-methoxy-trans-but-3-enoic acid, formation of glucose, but not of NH3, from glutamate was inhibited. 3-Mercaptopicolinate completely inhibited NH3 formation from aspartate in the presence of the aminotransferase inhibitor in kidney tubules. The data show that NH3 can be formed via glutamate dehydrogenase and the purine nucleotide cycle at significant and approximately equal rates. 3-Mercaptopicolinate has no direct effect on NH3 formation via glutamate dehydrogenase, but inhibits that via the purine nucleotide cycle. We conclude that gluconeogenesis is not regulatory for NH3 formation in kidney.  相似文献   
39.
Abstract— Seven-day-old rats were injected intraperitoneally with l -phenylalanine (1 g/kg) and the time course of brain polyribosome disaggregation and changes in brain levels of phenylalanine, tryptophan and tyrosine were determined. Disaggregation of brain polyribosomes preceded the increase in levels of phenylalanine in brain, and followed the same time course as depletion of tryptophan from brain. The effects of several metabolites of phenylalanine (which are formed in phenylketonuria) on protein synthesis in vitro was determined for brain and liver systems. None of the compounds tested was inhibitory at concentrations below 10 mM and in all cases hepatic protein synthesis was more sensitive to inhibition than was the corresponding system from brain. Ribosomal dimers, formed in brain after injection of phenylalanine, were incapable of supporting high levels of protein synthesis in vitro, a finding that suggested that the inhibition of protein synthesis in vitro in cell-free systems of brain tissue after injection of phenylalanine into young rats was mediated by disaggregation of brain polyribosomes associated with tryptophan deficiency in brain.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号